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Abstract 

 
In Mobile Edge Computing (MEC), attackers can speculate and mine sensitive user 
information by eavesdropping wireless channel status and offloading usage pattern, leading 
to user privacy leakage. To solve this problem, this paper proposes a Privacy-preserving and 
Energy-efficient Offloading Algorithm (PEOA) based on Lyapunov optimization. In this 
method, a continuous Markov process offloading model with a buffer queue strategy is built 
first. Then the amount of privacy of offloading usage pattern in wireless channel is defined. 
Finally, by introducing the Lyapunov optimization, the problem of minimum average energy 
consumption in continuous state transition process with privacy constraints in the infinite 
time domain is transformed into the minimum value problem of each timeslot, which reduces 
the complexity of algorithms and helps obtain the optimal solution while maintaining low 
energy consumption. The experimental results show that, compared with other methods, 
PEOA can maintain the amount of privacy accumulation in the system near zero, while 
sustaining low average energy consumption costs. This makes it difficult for attackers to 
infer sensitive user information through offloading usage patterns, thus effectively protecting 
user privacy and safety. 
 
 
Keywords: Mobile edge computing, Computing offloading, Usage pattern, Privacy 
protection, Lyapunov optimization. 
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1. Introduction 

With the rapid development of science and technology, mobile terminal devices carry 
more functions and roles. Due to the limited computing power and storage capacity of 
mobile devices, which cannot meet the needs of some emerging applications (e.g., 
auto-driving vehicular networks [1] and augmented reality (AR) [2]), Mobile Edge 
Computing (MEC) [3] has emerged. MEC offers computing power guarantee for the three 
types of scenarios in 5G era, enhanced Mobile BroadBand (eMBB), massive Machine Type 
of Communication (mMTC), as well as Ultra-Reliable and Low Latency Communications 
(URLLC).  

However, the localized deployment of MEC expose them to the edge of network, they 
facilitate attackers to attack MEC physical facilities and mine user privacy. In addition, MEC 
allows operators to open their wireless access networks to authorized third parties through 
MEC for channel listening and illegal access, resulting in security threats such as privacy 
leakage and information tampering [4]. For example, malicious users can use illegal access 
methods (e.g.,untrustworthy service providers) to silently monitor offloading patterns of 
specific users to infer or track their privacy [5]. In particular, since the patterns of 
computation offloading are highly correlated with personal characteristics, such as the time 
characteristics of user terminals generating computation tasks are strongly correlated with 
individual characteristics, attackers can mine privacy and infer sensitive user information by 
eavesdropping on wireless channels. Therefore, offloading methods with privacy protection 
need to be designed to avoid attackers from mining user privacy through channel 
eavesdropping.  

Existing research on privacy protection in MEC is relatively small and mostly focuses 
on traditional privacy security issues such as authentication [6], trust security [7], intrusion 
detection [8]. Therefore, in this work, a privacy-preserving and energy-efficient offloading 
algorithm (PEOA) method based on Lyapunov optimization is designed to protect offloading 
usage pattern. The approach seeks to maintain a low average energy cost while providing 
privacy protection. The main contributions of this work are as follows. 1) An offloading 
model for continuous state MEC systems with privacy constraints is developed based on a 
Markov Decision Process (MDP) by defining the amount of privacy. 2) An offloading 
method PEOA based on Lyapunov drift considering privacy preservation and energy cost is 
designed. 3) Finally, the experiments are conducted to verify the effectiveness of the method. 

2. Related Work 
In this section, we briefly introduce the privacy protection techniques in MEC. 

In the study of MEC systems, a large amount of research work has focused on studying 
the problem of optimizing dynamic resource allocation. For example, in [9], a dual 
time-frame associative offloading resource allocation scheme is designed with the goal of 
reducing latency, and different resource allocation policies are specified for users at each 
time slot by Lyapunov's online optimization algorithm. In [10], resource allocation 
algorithms that provide high quality services by maintaining queue length stability are 
investigated. A series of game-theory-based resource scheduling approaches in multi-access 
edge computing are outlined in [11]. However, these studies mainly elaborated on the 
optimization problem of resource allocation on energy consumption and latency, with little 
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attention paid to the security issues in the offloading process. 
As for the offloading security issues, MEC privacy protection techniques in MEC are 

less studied and mainly focus on traditional security protection methods, such as data 
encryption and access control. Research on privacy security strategies related to the 
offloading process focused on data masking, i.e., hiding the real information of users against 
background knowledge attacks during data distribution. For example, in [12], the authors 
obfuscate the offloading pattern by adding fake tasks to defend against private information 
detected by attackers through eavesdropping. In [13], the authors used differential privacy 
based on Voronoi diagram to scramble the data so that attackers cannot easily obtain the 
location information, thus protecting privacy. In [14], a privacy-preserving computation 
offloading method is proposed by changing user offloading frequency based on k-anonymity. 
In [15], the authors reduce the relevance of task offloading and users by increasing the cache 
hit rate or randomly selecting edge servers to protect user privacy and security. In [16], the 
authors propose a two-phase offload optimization strategy to improve the reliability of the 
system by jointly optimizing the resource utilization efficiency and privacy goals of edge 
computing units. However, the above studies did not to analyze the correlation between 
offloading usage pattern and channel status in continuous dynamic channel status. Since 
users have to minimize energy consumption when offloading through wireless channel, they 
will generally perform MEC offloading when the channel status is good and resort to local 
computation processing when the channel status is poor. The average channel gain is highly 
correlated with the distance between users and the MEC server, and hence attackers may 
easily locate users and infer their sensitive information [17]. Therefore, this paper 
characterizes the amount of privacy accumulation of offloading usage pattern using the 
statistical information observed by attackers in the wireless channel status. The concept of 
amount of privacy is proposed to show the correlation between offloading usage pattern 
observed through channel eavesdropping and original offloading usage pattern. When the 
channel status is good while users choose to offload, amount of privacy will increase; 
conversely, when the channel status is poor while users choose to offload, amount of privacy 
will drop because this breaks the original offloading pattern in general, which makes it more 
difficult for attackers to infer sensitive information. In particular, in [18], the impact of 
different scheduling strategies on delay performance under different delay requirements in 
5G wireless networks is discussed. Here, we exploited the buffer queue of user terminals to 
change the original offloading behavior patterns with delay constraint in order to limit the 
amount of privacy accumulation in MEC nodes, which can ensure user privacy. Since MDP 
is more adaptable in dynamic environments, it has been applied in algorithms for optimal 
scheduling of MEC systems [19-20] and energy consumption analysis [21]. Therefore, in 
this paper, a PEOA method based on Lyapunov optimization in continuous dynamic channel 
status is proposed. Specifically, an MEC offloading model based on Markov process with 
privacy constraints is built first. Then, by introducing the Lyapunov optimization, the 
problem of minimum average energy consumption in continuous state transition process with 
privacy constraints in the infinite time domain is transformed into the minimum value 
problem of each timeslot, which reduces the complexity of the algorithms and helps obtain 
the optimal solution. The experimental results show that PEOA can maintain the amount of 
privacy accumulation in the system near zero, while sustaining low average energy 
consumption costs, which makes it difficult for attackers to infer sensitive information 
through offloading usage pattern, thus effectively protecting user privacy and safety. 
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3. System model and privacy issues  

3.1 System model 

It is assumed that the system model in the MEC consists of three parts: the user terminal, the 
wireless channel, and the MEC server, as shown in Fig. 1. The number of tasks generated by 
users in each timeslot is }d{0,1,..., max∈nd , and each task contains M bits. At each timeslot, 
users may specify the offloading policy based on the channel status and their own decision,  
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Fig. 1. MEC system model with buffer. 

and this process is considered as a MDP [22]. The channel status admits a second-order 
Markov process }1,{0∈Η whose transition probability is }|{ 1 nnH hhP + . The status of each 
timeslot is },,{ nnnn bhdS = , where 0}{ ≥nnh denotes the status of the communication channel 
between the user terminal and the MEC server, }d{0,1,..., max∈nd  denotes the number of 
tasks generated in n-th timeslot randomly selected within the value range, and

}b{0,1,..., max∈nb means the number of tasks in a certain timeslot buffer. The offloading 
policy for each timeslot is π∈= nnnnn alqueueoffa },,,{ , where ],0[ maxmax bdoffn +∈ denotes 
the number of tasks offloaded to the MEC server, ],0[ maxbqueuen ∈ represents the number of 
tasks buffered, and nl denotes the number of tasks processed locally. According to the 
offloading policy of a timeslot, the next state is obtained as },,{ 1111 ++++ = nnnn bhdS , where 

nn queueb =+1 . Therefore, the cost of taking the action policy na  in state nS  is given by: 

                                                                                                                              (1) 

In (1), qw  denotes the relative importance of user terminal time delay for energy 
consumption, nE  represents the energy consumption for offloading to the MEC server and 

lE  denotes the energy consumption for local processing. Based on the above model, the 
average energy consumption in the initial state 0S  of offloading policy π  is given by: 
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In the above equation, nE denotes the expected value of the costs incurred by the 
corresponding offloading policy. Therefore, the system state is a finite-state Markov process 
under the initial state 0S  of the offloading strategy π , and the optimal solution can be 
found through the MDP framework [22]. The main symbols and descriptions involved in the 
article are shown in Table 1. 
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Table 1. Main symbols and description. 

Symbol Description 
Η  Channel status with good or poor 

 The number of tasks generated in timeslot n  with an upper bound of maxd  

 The channel status in timeslot n  

 The number of tasks in timeslot n  in buffer with an upper bound of maxb   

  The status of timeslot n  in MEC system 

 Channel status transition probability from timeslot n  to 1+n  

 Offloading policy in timeslot n  
*

na  The optimal offloading policy in timeslot n  

  The number of tasks offloaded to the MEC server  in timeslot n  

 The number of tasks buffered in mobile user in timeslot n  

 The number of tasks processed locally in timeslot n  

 The set of all possible strategies for na  

qw  The relative importance of user terminal time delay for energy consumption 

nq
 

The privacy contained under strategy na   
in timeslot n  

nE  The energy consumption for offloading to the MEC server in timeslot n  

lE  The energy consumption for local processing 

0S  The initial state of MEC system 

 
The cost of taking the action policy na  in state nS  

 
The average energy consumption in the initial state 0S  of offloading policyπ  

}{⋅Γ  An indicator function 

fakeTask  
The number of fake task generated by user 

 

The amount of privacy accumulation at timeslot n  with the initial state 0S  of 
offloading policyπ  

V  Lyapunov adjustment parameter 

 Lyapunov function in timeslot n  

 Lyapunov drift 
θ  Privacy threshold 

 
The optimal solution at timeslot n  with the initial state 0S  of offloading policyπ  

3.2 Privacy issues 
Since MEC systems transition tasks over wireless channels, malicious attackers can infer 
sensitive information about users by eavesdropping on the channel state, thus posing privacy 
threats. For example, in general, user offloading behaviors obeys this rule: when the channel 
status is good ( 1=nh ), all the generated tasks are chosen to offload to the MEC servers; 
when the channel status is poor ( 0=nh ), all the generated tasks are chosen to be processed 
locally, as shown in Fig. 2. Attackers can obtain users’ offloading characteristics by listening 
to the channel state, and speculate sensitive information, thus causing privacy leakage. 
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Therefore, we use the offloading behavior that eavesdroppers may tap through the wireless 
channel as a privacy feature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Task offloading strategy without privacy constraints. 
 

The amount of privacy contained in action strategy na  taken in a certain timeslot 1-nS  is 
given by (3). 
 

              }0{}0{}1{1- ),( =>= Γ⋅Γ⋅−Γ⋅=
nnn hoffnhnnnn offoffaSq                  (3) 

 

Here, }{⋅Γ is an indicator function. In (3), the user terminal needs to appropriately 
reduce the number of tasks that are offloaded to MEC server when the channel status is good 
in order to protect privacy. At the same time, it is necessary to upload tasks to MEC server 
appropriately when the channel condition is poor, which can be achieved by buffering tasks 
that satisfy the delay constraint. Breaking the original user offloading rule, this new strategy 
protects user privacy by reducing the amount of privacy accumulation that attackers can 
monitor through channel eavesdropping, making it more difficult to mine sensitive user 
information. In particular, the amount of privacy can also be reduced by randomly generating 
fake tasks if the current privacy accumulation exceeds a threshold θ  while the newly 
generated task for that timeslot is 0 and the buffer is 0. Here, θ  is a positive constant and its 
magnitude indicates the stringency of the user's privacy requirements. The smaller θ  
indicates a more stringent privacy requirement. 

In the specific implementation, false tasks can be achieved by user-initiated randomly 
generated offload request tasks, where ],1[ maxdTask fake ∈  and faken Taskoff = . The fake tasks 
only perform offloading requests and do not occupy the computing resources of MEC 
servers. Thus they are not the complete task computing offloading process, so as to reduce 
the energy consumption. Therefore, the amount of privacy accumulation at timeslot n  with 
the initial state 0S  of offloading policy π  is given by (4):  

                                                                                         
                     (4) 
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4. Proposed solution 
In this section, we first construct the drift function by introducing the Lyapunov function and 
prove the stability of the drift; then, we equilibrate the relationship between energy 
consumption and privacy by introducing the parameter V; finally, we design a 
privacy-preserving and energy-cost offloading method based on Lyapunov optimization. 

4.1 Lyapunov optimization       
                                                                                                                                 

 
According to MEC system model and the privacy amount determination method, the PEOA 
model in the initial state 0S following strategy π at the user terminal is given by: 
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Equation (5) represents the objective of minimizing the average energy cost based on the 
simultaneous incorporation of privacy constraints. Equation (5a) describes the privacy 
constraints; Equation (5b) represents the offloading strategies that users can adopt under the 
time delay constraint; Equations (5c), (5d), and (5e) represent the constraints of each 
indicator function of the user terminal; and Equation (5f) clarifies the status transition 
relationship. When the amount of privacy accumulated by eavesdroppers is closer to zero, 
the less likely users' sensitive information will be mined. The objective function is a MDP. If 
the function is solved using the MDP framework, transforming the system into finite 
deterministic states can be complex, and a large amount of storage space is required at the 
terminal to preserve the optimal policy space for each status. 

Therefore, the Lyapunov optimization method [23] is used in this paper for the optimal 
solution. This method can transform the minimum average energy consumption problem in 
the continuous state transition process with privacy constraints in the infinite time domain 
into the minimum value problem for each timeslot, seeking the optimal solution by simplify 
the algorithm. This paper considers )(

0, nQ Sπ  the amount of privacy accumulation that can 
be monitored by attackers at the timeslot n , as a virtual queue, which leads to (6): 

}0{}0{}1{,, )1()(
00 =>= Γ⋅Γ⋅−Γ⋅+−=

nnn hoffnhnSS offoffnQnQ ππ          (6)                                  

The Lyapunov function is added to describe the stability of the queue, and for each 
timeslot n , 

   2
, )(

2
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0
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Then the Lyapunov drift of two adjacent timeslots is given by:
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Here, B is a positive constant, with an upper bound of 22
noff , and )(

~
nL∆ has an 

approximate value of )(nL∆ . To avoid focusing only on drift minimization and ignoring 
energy consumption, which may cause all tasks offloaded locally, the adjustment parameter 
V is added. With energy consumption as a penalty mechanism, V  is used to equilibrate 
between privacy and energy consumption. Further, the optimal solution for the offloading 
decision in each timeslot is obtained, as shown in (9): 

  ),()(  min:)(
~

, 0 nnnS aSCostVnLn ⋅+∆Λ
∞→

π                 (9)                                                     

Here, V is a positive constant. The size of V indicates how much each timeslot is 
penalized for energy consumption. The larger the V , the lower the average energy costs. 
Larger V  means that more amounts of privacy accumulation )(

0, nQ Sπ  cannot be stabilized 
near zero. Therefore, V needs to be determined in line with the specific channel status and 
user requirements, so as to strike a balance between energy consumption and privacy 
constraints. 

4.2 PEOA design  
To further prove the PEOA method based on Lyapunov optimization, the PEOA algorithm is 
designed. The specific algorithm description is shown below.  

The objective of the algorithm proposed in this paper is to find the offloading strategy 
for each timeslot for a given MEC system status while minimizing the average energy 
consumption and protecting privacy. In each timeslot n , alternative offloading policies na  
are first determined based on the system state 0S (Step 1). Then, the amount of privacy 
accumulation and drift function are calculated according to (1) and (3) (Step 2). When the 
privacy accumulation is less than the threshold or the privacy accumulation exceeds the 
threshold meanwhile the number of newly generated tasks or the number of buffer queuing 
tasks in this timeslot is not zero, the optimal offloading policy *

na is determined according 
to the Lyapunov drift function (Step 3). If the amount of privacy exceeds the threshold and 
the number of newly generated tasks and the number of buffer queuing tasks are both zero 
for that timeslot, random fake tasks are generated to reduce privacy accumulation (Step 4). 
Finally, the action policy is recorded and the system state is updated (Step 5). Thus, PEOA 
can minimize the average energy consumption of the MEC system in a continuous Markov 
status by finding the optimal offloading policy at each timeslot. Experiments show that 
average costs converge when the timeslot reaches *

nn aa = . 
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Algorithm 1: PEOA 

Initialization: 
1) Initialize the system state 0S  and action strategy space na and generate channel status and 

corresponding tasks by timeslot.   
2) Set iteration parameters n , privacy constraints θ , and MEC system model 

communication parameters, e.g. , maxd , maxb , qw . 
Repeat Iterations: 
Step 1: Obtain alternative action strategy combinations based on system status. 
Step 2: The amount of privacy accumulation and the drift function are calculated based on the 

combination of each action strategy. 
Step 3: If the current privacy accumulation is less than the threshold or if the current privacy 

accumulation exceeds the threshold meanwhile the number of newly generated tasks in that 
timeslot or the buffer queuing tasks is not zero, the optimal action policy selected according to (9) 
is the policy *

nn aa = . 
Step 4: If the current privacy accumulation exceeds the threshold and both the number of 

newly generated tasks and buffer queuing tasks for that timeslot are zero, then random fake tasks 
are generated at that timeslot ,0,0}{ faken Taska = . 

Step 5: Record action strategies and update system state nn queueb =+1 . 
End 
The algorithm will terminate when the index reaches the maximum number of iterations, and 

return to the selected action strategy. 
 

4.3 Complexity Analysis 
In this section, we analyze the complexity of the PEOA algorithm. 

In the MEC system, we assume that the maximum number of spatial states brought by 
the policy action na is maxS , and the maximum number of possible policy actions under the 
state space nS  is maxa . Then the complexity of the Basic MDP algorithm in timeslot t  
would be )**( maxmax taSΟ . However, with the introduction of Lyapunov, the range of 
alternative policy action space can be narrowed by calculating the minimum value of 
timeslot drift, and the problem of minimum average cost in finite time domain is transformed 
into the problem of minimum value per timeslot. In this case, the complexity of PEOA 
algorithm would be )*( max taΟ which can effectively reduce the complexity of the algorithm 
and save the computational space. 

5. Numerical results 

5.1 Experimental design 
In this section, to corroborate the proposed algorithm, Matlab 2018b is employed for 
numerical simulations. In the simulation analysis, the transition probability of the channel 
status is assumed to be 5.0/95.0)0|0()1|1( 11 ====== ++ nnHnnH hhPhhP . When users 
perform computational offloading, the resulting energy consumption

nhnnnn eoffhoffE ⋅=),( , 
where },{ 10 ==∈

nnn hhh eee  represents the transition energy consumption of a single task at a 
certain timeslot in the channel status

nhe . Assuming that a single task size K500M = bits, 
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bandwidth MHzB 5= , the transition time for each task is sToff 1.0= , time delay tolerance 
per task )(nξ  is 2 timeslots, and the values of channel power gain to noise power BN ⋅0  in 
the case of good and poor channel status are 0.2/0.05. Based on 

offn
TBM

offhoff ThNBTnpne off
n

⋅⋅⋅−=⋅= ⋅ 2
0

/ /)()12()()( ）（ , there is Je
nh 5.01 == , Je

nh 20 == . 

Furthermore, energy consumption for local computing lnnl ellE ⋅=)( , where le  indicates 
the energy consumption for processing a single task locally. It is assumed that the local CPU 
operating frequency GHzfl 2= , energy consumption factor 27-101×=κ [24], local energy 
consumption JffTaske lll 1)(/ 3 =⋅×⋅= κη , where bitcycles /500=η [25]. The queuing weight 
factor is used to adjust users' sensitivity to latency and energy consumption, and in this 
experiment this value is set as 8.0=qw , }0,1,1{0 =S . In the experiment, we assume that 

4,3 maxmax == bd , and timeslot 410=t . The experimental setup is shown in Table 2. 
To validate the proposed algorithm, three methods were selected for comparison, Basic, 

Naive and Chaff [12]. In the Basic method, users choose the least energy consuming method 
for local computation or computational offloading at each timeslot without considering 
privacy constraints; in the Naive method, users find the least energy consuming offloading 
method without exceeding privacy constraints on the basis of the Basic algorithm; in the 
Chaff algorithm, users reduce the amount of privacy accumulation by adding false tasks, 
where the cost of setting up a single fake task is Je fake 2=  and that of dropping a task is 

Jedrop 5= . All experiments were judged by the mean value of the results of 100 Monte Carlo 
runs. 

 

5.2 Results analysis 
In the numerical analysis, Fig. 3 first shows the actual offloading strategy adopted by the 
user in the PEOA approach proposed in this paper. Subsequently, Figs. 4 to 7 validate the 
effectiveness of the algorithm in this paper in terms of privacy accumulation, average energy 
consumption, stability of the drift function, and variation in the values of the parameter V. 
 

Table 2. Experiment Settings 
Symbol Description Value 

 
The transition probability of the channel 

status from 1=nh  to 11 =+nh  
0.95/0.5 

 
The transition probability of the channel 

status from 0=nh  to 01 =+nh  
0.95/0.5 

 A single task size 500K bits 
 Bandwidth 5 MHz 

 The transition time of offloading 0.1s 
)(nξ  User time delay tolerance 2 timeslot 

 The local CPU operating frequency 2GHz 

 Energy consumption coefficient 27-101× [24] 

 
The number of CPU cycles required to 

process 1 bit of data 500 cycles/bit [25] 

)1|1( 1 ==+ nnH hhP

)0|0( 1 ==+ nnH hhP

M
B
offT

lf

κ

η
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The energy consumption for processing a 

single task locally 1J 

)/( 0
2 BNhn ⋅  

The channel power gain to noise power 
BN ⋅0  ratio 

0.2/0.05 

 
The transition energy consumption of a 

single task at timeslot n  in 1=nh  0.5J 

 
The transition energy consumption of a 
single task at timeslot n  in 0=nh  2J 

 
The relative importance of user terminal 

time delay for energy consumption 0.8 

 The initial state of MEC system {1,1,0} 

 
The upper bound of task number generated 

per timeslot 3 

 The upper bound of buffer 4 

 The experiment time slot 104 

 The cost of setting up a single fake task 2J 

 The cost of dropping a task 5J 
 

Fig. 3 illustrates the offloading policy of users under the PEOA algorithm 
( 4,3 maxmax == bd ). Compared to the Basic algorithm, PEOA offloads more tasks to the 
MEC server to protect user privacy when the channel status 0=nh , such as the timeslot 
between st 60= and st 70= . When the channel status 1=nh , users select tasks to be 
computed locally, such as the timeslot between st 20= and st 30= . This differs from the 
original offloading method in that not all computations are performed locally when 0=nh
and all computations are offloaded when 1=nh .  

Fig. 4 presents the changes in the amount of privacy accumulation )(
0, tQ Sπ  for the 

four algorithms when the timeslot is varied ( 10V10 == ，θ ). As can be seen from the figure, 
the privacy accumulation in the Basic method is much higher than the privacy threshold 
(according to the right coordinate), which facilitates attackers to infer user information and 
thus increases the risk of user privacy leakage; the privacy accumulation in the Naive and 
Chaff algorithms is concentrated around the threshold (according to the left coordinate), 
while that of PEOA floats up and down in a smaller range around 0, which means that it can 
protect user privacy by adjusting the offloading or making tasks processed locally.  

To further illustrate the energy consumption of these algorithms under privacy 
constraints, Fig. 5 is presented to show the changes in the four algorithms ( 10V10 == ，θ ). 
As can be seen, with the increase of timeslot, the average energy consumption of all four 
algorithms stabilizes at 410=t . Except for the Basic algorithm which does not consider 
privacy constraints, the PEOA algorithm has the lowest average energy consumption among 
the other three algorithms, saving about 62.4% and 25.2% compared to Naive and Chaff 
methods. PEOA algorithm can keep lower average energy consumption costs while offering 
privacy protection. 
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Fig. 3. Actual offloading decisions with privacy constraints. 

 
Fig. 4. Changes in the amount of privacy accumulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Average energy consumption analysis. 
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n  = 0) = 0.5

Naive P
H (h n+1

 = 1|h
n  = 1) = P H (h n+1

 = 0|h
n  = 0) = 0.5

PEOA P
H (h n+1

 = 1|h
n  = 1) = P H (h n+1

 = 0|h
n  = 0) = 0.95

Basic  P
H (h n+1

 = 1|h
n  = 1) = P H (h n+1

 = 0|h
n  = 0) = 0.95

Chaff P
H (h n+1

 = 1|h
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 = 0|h
n  = 0) = 0.95

Naive P
H (h n+1

 = 1|h
n  = 1) = P H (h n+1

 = 0|h
n  = 0) = 0.95

Table 3. Analysis of false task and drop task strategies with different privacy thresholds 

Privacy 
thresholds 

False task strategies Drop task strategies 

6=θ  (PEOA) 0.0041 0.0357 
6=θ  (Chaff) 0.0357 0.4162 

10=θ  (PEOA) 0.0035 0.0308 
10=θ  (Chaff) 0.0456 0.4204 
50=θ  (PEOA) 0 0 
50=θ  (Chaff) 0.0453 0.4467 

Table 3 shows the proportions of false task strategies and drop task strategies for both 
PEOA and Chaff algorithms under different privacy threshold constraints. When the privacy 
threshold is low; in other words, when the privacy constraint is more stringent, the false task 
rate and drop task rate of PEOA are lower than those of Chaff algorithm. This is due to the 
fact that PEOA can reduce the privacy accumulation and satisfy the privacy constraint by 
selecting buffer tasks with the optimal policy within the latency constraint by user terminal. 
When privacy constraint is more relaxed, the false task rate and task drop rate of PEOA can 
be reduced to 0. The analysis also explains why average energy consumption of PEOA is 
low when the privacy constraint is relaxed. 

Fig. 6. Drift function analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Parameter V analysis. 
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 Fig. 6 illustrates how the drift function )(
0, nSπΛ varies with timeslot ( 100=V ). As can 

be seen, the value of )(
0, nSπΛ  is fixed within a certain area whenever the timeslot changes. 

This result verifies the existence of the upper bound of (9) and indirectly verifies the stability 
of the Lyapunov drift. Fig. 7 shows the changes in the average energy consumption with 
parameter V  for different channel status when 410=t
( 5.0/95.0)0|0()1|1( 11 ====== ++ nnHnnH hhPhhP ). In different channel states, the average 
energy consumption first decreases as V increases; when the value of V  is greater than 

510 , the average energy consumption will not vary with V , but will remain at a stable stale. 
At the same time, the increase of V affects the amount of privacy accumulation, so that it 
cannot be stabilized near 0. Therefore, the size of V can be chosen within the range of 

510<V based on energy consumption and privacy requirements. Moreover, PEOA can 
provide stable privacy protection and keep low energy consumption costs in different 
channel status.  

6. Conclusion 
In this paper, a PEOA method based on Lyapunov optimization is designed in response to 
the privacy leakage that may arise from behavioral characteristics of user computing 
offloading in MEC scenarios. Upon defining the amount of privacy, the method reduces the 
probability that attackers obtain sensitive user information through channels eavesdropping 
by changing the relationship between different channel status and offloading usage decisions. 
This paper exploits the buffer queue strategy of user terminals and integrates energy 
consumption overhead so as to limit the amount of privacy at MEC nodes and protect user 
privacy. Simulation experiments show that the PEOA algorithm can effectively protect user 
privacy while ensuring low energy consumption.  
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